Transcriptome Analysis of Blunt Snout Bream (Megalobrama amblycephala) Reveals Putative Differential Expression Genes Related to Growth and Hypoxia
نویسندگان
چکیده
The blunt snout bream (Megalobrama amblycephala) is an important freshwater aquaculture species, but it is sensitive to hypoxia. No transcriptome data related to growth and hypoxia response are available for this species. In this study, we performed de novo transcriptome sequencing for the liver and gills of the fast-growth family and slow-growth family derived from 'Pujiang No.1' F10 blunt snout bream that were under hypoxic stress and normoxia, respectively. The fish were divided into the following 4 groups: fast-growth family under hypoxic stress, FH; slow-growth family under hypoxic stress, SH; fast-growth family under normoxia, FN; and slow-growth family under normoxia, SN. A total of 185 million high-quality reads were obtained from the normalized cDNA of the pooled samples, which were assembled into 465,582 contigs and 237,172 transcripts. A total of 31,338 transcripts from the same locus (unigenes) were annotated and assigned to 104 functional groups, and 23,103 unigenes were classified into seven main categories, including 45 secondary KEGG pathways. A total of 22,255 (71%) known putative unigenes were found to be shared across the genomes of five model fish species and mammals, and a substantial number (9.4%) of potentially novel genes were identified. When 6,639 unigenes were used in the analysis of differential expression (DE) genes, the number of putative DE genes related to growth pathways in FH, SH, SN and FN was 159, 118, 92 and 65 in both the liver and gills, respectively, and the number of DE genes related to hypoxic response was 57, 33, 23 and 21 in FH, FN, SH and SN, respectively. Our results suggest that growth performance of the fast-growth family should be due to complex mutual gene regulatory mechanisms of these putative DE genes between growth and hypoxia.
منابع مشابه
Blunt Snout Bream (Megalobrama amblycephala) MyD88 and TRAF6: Characterisation, Comparative Homology Modelling and Expression
MyD88 and TRAF6 play an essential role in the innate immune response in most animals. This study reports the full-length MaMyD88 and MaTRAF6 genes identified from the blunt snout bream (Megalobrama amblycephala) transcriptome profile. MaMyD88 is 2501 base pairs (bp) long, encoding a putative protein of 284 amino acids (aa), including the N-terminal DEATH domain of 78 aa and the C-terminal TIR d...
متن کاملThe draft genome of blunt snout bream (Megalobrama amblycephala) reveals the development of intermuscular bone and adaptation to herbivorous diet
The blunt snout bream Megalobrama amblycephala is the economically most important cyprinid fish species. As an herbivore, it can be grown by eco-friendly and resource-conserving aquaculture. However, the large number of intermuscular bones in the trunk musculature is adverse to fish meat processing and consumption. As a first towards optimizing this aquatic livestock, we present a 1.116-Gb draf...
متن کاملDe novo assembly of the blunt snout bream (Megalobrama amblycephala) gill transcriptome to identify ammonia exposure associated microRNAs and their targets
De novo transcriptome sequencing is a robust method for microRNA (miRNA) target gene prediction, especially for organisms without reference genomes. Following exposure of Megalobrama amblycephala to ammonia (0.1 or 20 mg L(-1) ), two cDNA libraries were constructed from the fish gills and sequenced using Illumina HiSeq 2000. Over 90 million reads were generated and de novo assembled into 46, 61...
متن کاملTranscriptome Analysis and SSR/SNP Markers Information of the Blunt Snout Bream (Megalobrama amblycephala)
BACKGROUND Blunt snout bream (Megalobrama amblycephala) is an herbivorous freshwater fish species native to China and has been recognized as a main aquaculture species in the Chinese freshwater polyculture system with high economic value. Right now, only limited EST resources were available for M. amblycephala. Recent advances in large-scale RNA sequencing provide a fast, cost-effective, and re...
متن کاملDivergence of Genes Encoding CITED1 and CITED2 in Blunt Snout Bream (Megalobrama amblycephala) and Their Transcriptional Responses to Hypoxia
The proteins CITED belong to a family of non-DNA-binding transcriptional co-regulators involved in the regulation of various transcriptional responses. Previous studies suggest that members of CITED family may function in response to hypoxia in mammals. however, the molecular and functional information on CITED genes in aquaculture fish is unclear. Here, we characterized and examined the transc...
متن کامل